Reconstructing the profile of time-varying magnetic fields with quantum sensors

نویسندگان

  • Easwar Magesan
  • Alexandre Cooper
  • Honam Yum
  • Paola Cappellaro
چکیده

Quantum systems have shown great promise for precision metrology thanks to advances in their control. This has allowed not only the sensitive estimation of external parameters but also the reconstruction of their temporal profile. In particular, quantum control techniques and orthogonal function theory have been applied to the reconstruction of the complete profiles of time-varying magnetic fields. Here, we provide a detailed theoretical analysis of the reconstruction method based on the Walsh functions, highlighting the relationship between the orthonormal Walsh basis, sensitivity of field reconstructions, data compression techniques, and dynamical decoupling theory. Specifically, we show how properties of the Walsh basis and a detailed sensitivity analysis of the reconstruction protocol provide a method to characterize the error between the reconstructed and true fields. In addition, we prove various results about the negligibility function on binary sequences which lead to data compression techniques in the Walsh basis and a more resource-efficient reconstruction protocol. The negligibility proves a fruitful concept to unify the information content of Walsh functions and their dynamical decoupling power, which makes the reconstruction method robust against noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved magnetic sensing with electronic spins in diamond.

Quantum probes can measure time-varying fields with high sensitivity and spatial resolution, enabling the study of biological, material and physical phenomena at the nanometre scale. In particular, nitrogen-vacancy centres in diamond have recently emerged as promising sensors of magnetic and electric fields. Although coherent control techniques have measured the amplitude of constant or oscilla...

متن کامل

جذب تشدیدی و اتلاف امواج هیدرومغناطیسی در تاج خورشید

  Although, the hot solar corona was discovered more than sixty years ago, however, the exact dissipation mechanism that heats the corona is still unknown. Resonant absorption and damping of Alfven waves appear to be one of the major candidates in this respect. The corona is highly structured and inhomogeneous medium, containing a large number of discrete magnetic loops. In this paper a cylindr...

متن کامل

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

میدانهای مغناطیسی بزرگ مقیاس و جفت‌شدگیهای الکترو- دیلاتونی و خمش

 We investigate the generation of large scale magnetic fields in the universe from quantum fluctuations that are produced in the inflationary stage. By coupling these quantum fluctuations to the dilaton field and Ricci scalar, we show that the magnetic fields with the strength observed today can be produced. We consider two situations. First, the evolution of dilaton ends by starting the reheat...

متن کامل

شبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست

 In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013